Multi-Objective Design Optimization of a Linear Brushless Permanent Magnet Motor Using Particle Swarm Optimization (PSO)

Authors

  • C. Lucas
  • F. Tootoonchian
  • Z. Nasiri-Gheidari
Abstract:

In this paper a brushless permanent magnet motor is designed considering minimum thrust ripple and maximum thrust density (the ratio of the thrust to permanent magnet volumes). Particle Swarm Optimization (PSO) is used as optimization method. Finite element analysis (FEA) is carried out base on the optimized and conventional geometric dimensions of the motor. The results of the FEA deal to the significant improvement of the all objective functions.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Using Modular Pole for Multi-Objective Design Optimization of a Linear Permanent Magnet Synchronous Motor by Particle Swarm Optimization (PSO)

In this paper particle swarm optimization (PSO) is used for a design optimization of a linear permanent magnet synchronous motor (LPMSM) considering ultra low thrust force ripples, low magnet consumption, improved efficiency and thrust. The influence of PM material is discussed, too and the modular poles are proposed to achieve the best characteristic. PM dimensions and material, air gap and mo...

full text

Using Modular Pole for Multi-Objective Design Optimization of a Linear Permanent Magnet Synchronous Motor by Particle Swarm Optimization (PSO)

In this paper particle swarm optimization (PSO) is used for a design optimization of a linear permanent magnet synchronous motor (LPMSM) considering ultra low thrust force ripples, low magnet consumption, improved efficiency and thrust. The influence of PM material is discussed, too and the modular poles are proposed to achieve the best characteristic. PM dimensions and material, air gap and mo...

full text

Design and optimization of dc brushless permanent magnet motor

Electric motors that have found wide application in various sectors of industry Have unique features such as high reliability, high efficiency, quick acceleration and have small sizes. Brushless DC motors meet these requirements well. In this study, the design of a brushless DC motor speed limits for the particular application at 1800 rpm that can be equivalent to 140 watts output was provided....

full text

Design, Optimization and FEM Analysis of a Surface-Mounted Permanent-magnet Brushless DC Motor

In this paper a fast analytical algorithm for design a surface-mounted PM Brushless DC motor (SMPM-BLDC) for variable-speed application based on electromagnetic field analysis and RSM optimization algorithm is discussed. To achieve the desired performance, the physical dimensions of the proposed SMPM-BLDC motor subject to minimal ripple torque utilizing RSM optimization algorithm were optimized...

full text

Design Optimization of Permanent Magnet Brushless Dc Motor

This paper presents performance analysis of permanent magnet brush less dc motor (BLDC) using FEA based CAD package MagNet 6.13.First the characteristics of the standard BLDC motor is analysed. Then the design modifications are introduced and the performance of the machine is analysed. Based on the results optimum design is obtained.

full text

Optimum Design of a Five-Phase Permanent Magnet Synchronous Motor for Underwater Vehicles by use of Particle Swarm Optimization

Permanent magnet synchronous motors are efficient motors, which have widespread applications in electric industry due to their noticeable features. One of the interesting applications of such motors is in underwater vehicles. In these cases, reaching to minimum volume and high torque of the motor are the major concern. Design optimization can enhance their merits considerably, thus reduce volum...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 3

pages  183- 189

publication date 2010-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023